
Smart Contract Audit Report

Unlock Protocol

11th of February 2022

https://byterocket.dev


Smart Contract Audit Report - Unlock Protocol

Contents
1. Preface 3

2. Manual Code Review 4

2.1 Severity Categories 4

2.2 Summary 5

2.3 Findings 6

3. Protocol/Logic Review 17

4. Summary 18

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held
understanding of the auditor’s knowledge of security patterns as they relate to the client’s
contract(s), assuming that blockchain technologies, in particular, will continue to undergo
frequent and ongoing development and therefore introduce unknown technical risks and flaws.
The scope of the audit presented here is limited to the issues identified in the preliminary
section and discussed in more detail in subsequent sections. The audit report does not address
or provide opinions on any security aspects of the Solidity compiler, the tools used in the
development of the contracts or the blockchain technologies themselves, or any issues not
specifically addressed in this audit report.

The audit report makes no statements or warranties about the utility of the code, safety of the
code, suitability of the business model, investment advice, endorsement of the platform or its
products, the legal framework for the business model, or any other statements about the
suitability of the contracts for a particular purpose, or their bug-free status.

To the full extent permissible by applicable law, the auditors disclaim all warranties, express or
implied. The information in this report is provided “as is” without warranty, representation, or
guarantee of any kind, including the accuracy of the information provided. The auditors hereby
disclaim, and each client or user of this audit report hereby waives, releases and holds all
auditors harmless from, any and all liability, damage, expense, or harm (actual, threatened, or
claimed) from such use.

11th of February 2022 - byterocket.com Page 2 of 18



Smart Contract Audit Report - Unlock Protocol

1. Preface
The developers of Unlock Protocol contracted byterocket to conduct a smart contract
audit of their smart contracts. Unlock Protocol is “an access control protocol built on a
blockchain. It enables creators to monetize their content or software without relying on a
middleman. It lets consumers manage all of their subscriptions in a consistent way, as
well as earn discounts when they share the best content and applications they use.”

The team of byterocket reviewed and audited the above smart contracts in the course of
this audit. We started on the 31st of January and finished on the 11th of February 2022.

The audit included the following services:
● Manual Multi-Pass Code Review
● Protocol/Logic Analysis
● Automated Code Review
● Formal Report

byterocket gained access to the code via a public GitHub repository. The developers
froze the code in a separate branch for us. We based the audit on our auditing branch
state, deployed on January 28th, 2022 (commit hash bfb4d59e5a4c5490fa8d
dc9a7d235691de64da62).

11th of February 2022 - byterocket.com Page 3 of 18

https://github.com/unlock-protocol/unlock
https://github.com/unlock-protocol/unlock/tree/byterocket-audit
https://github.com/unlock-protocol/unlock/tree/byterocket-audit


Smart Contract Audit Report - Unlock Protocol

2. Manual Code Review
We conducted a manual multi-pass code review of the smart contracts mentioned in
section (1). Three different people went through the smart contract independently and
compared their results in multiple concluding discussions.

The manual review and analysis were additionally supported by multiple automated
reviewing tools, like Slither, GasGauge, Manticore, and different fuzzing tools.

2.1 Severity Categories

We are categorizing our findings into four different levels of severity:

Non-Critical

Does not impose immediate risk but is relevant to security
best practices.

Includes issues with
- Code style and clarity
- Versioning
- Off-chain monitoring

Low Severity

Imposes relatively small risks or could impose risks in the
long-term but without assets being at risk in the current
implementation.

Includes issues with
- State handling
- Functions being incorrect as to specification
- Faulty documentation or in-code comments

Medium Severity
Imposes risks on the function or availability of the protocol
or imposes financial risk by leaking value from the protocol if
external requirements are met.

High Severity

Imposes catastrophic risk for users and/or the protocol.

Includes issues that could result in
- Assets being stolen/lost/compromised
- Contracts being rendered useless
- Contracts being gained control of

11th of February 2022 - byterocket.com Page 4 of 18

https://github.com/crytic/slither
https://gasgauge.github.io
https://github.com/trailofbits/manticore


Smart Contract Audit Report - Unlock Protocol

2.2 Summary

On the code level, we found 23 bugs or flaws, with 12 non-critical, 9 of low severity,
and 1 of medium severity.

The contracts are mostly written according to the latest standard used within the
Ethereum community and the Solidity community’s best practices, with some
exceptions listed below. The naming of variables is very logical and understandable,
which results in the contract being useful to understand. The code is very well
documented, except for some occurrences listed below. The developers provided us
with a test suite as well as deployment scripts.

It is, however, noticeable that different people worked on these contracts without a style
guide or best practices that they agreed upon. There are parts of the code that look very
different from others. This has no security implications, we are just noting it.

11th of February 2022 - byterocket.com Page 5 of 18



Smart Contract Audit Report - Unlock Protocol

2.3 Findings

[MEDIUM SEVERITY] M.1 - Dangerous Management of Key Manager
Location: MixinPurchase.sol - Line 116

Description:
A user can leverage the purchase function to extend another user's key. While doing so,
they can set themselves (or any address for that matter) as the key manager. This should
not be possible.

These are the affected lines of code:

_setKeyManagerOf(idTo, _keyManager);

Recommendation:
Consider wrapping the _setKeyManager() call in line 116 in an if-clause that verifies that
the caller (msg.sender) is the _recipient.

[LOW SEVERITY] L.1 - Gas refund value can be higher than price
Location: MixinPurchase.sol - Line 34 - 36 & 151 - 160

Description:
The user can set the gas refund value to an arbitrary value. Hence, it is possible to set
the gas refund to very high amounts, even higher than the actual value of the key. The
user can lose money with every sale because of this.

These are the affected lines of code:

function setGasRefundValue(uint256 _refundValue) external

onlyLockManager {

_gasRefundValue = _refundValue;

}

Recommendation:
With values that can be changed due to user input, we suggest adding safety and sanity
checks. In this case, we would suggest ensuring that the gas refund value is lower than or
equal to the actual key price.

11th of February 2022 - byterocket.com Page 6 of 18



Smart Contract Audit Report - Unlock Protocol

[LOW SEVERITY] L.2 - Setting a new template doesn’t validate the array
Location: Unlock.sol - Line 476 - 491

Description:
When the owner sets a new lock template for the subsequent calls to createLock(), the
implementation address for this is being defined. It is not, however, verified whether this
address is the current or latest address of the _publicLockImpls array. It’s not even
verified whether it is part of the array at all.

These are the affected lines of code:

function setLockTemplate(address _publicLockAddress) external onlyOwner

{

// First claim the template so that no-one else could

// this will revert if the template was already initialized.

IPublicLock(_publicLockAddress).initialize(

address(this), 0, address(0), 0, 0, ''

);

IPublicLock(_publicLockAddress).renounceLockManager();

publicLockAddress = _publicLockAddress;

emit SetLockTemplate(_publicLockAddress);

}

Recommendation:
Validate that the newly provided address is already part of the _publicLockImpls array,
or add it to the array at that moment if that is not the case.

[LOW SEVERITY] L.3 - Adding a new lock template doesn’t remove a faulty one
Location: Unlock.sol - Line 187 - 193

Description:
When a faulty implementation has been added, the version number could later be
reduced to jump back to the latest working version. In this case, the highest version
number of the faulty implementation still exists.

These are the affected lines of code:

function addLockTemplate(address impl, uint16 version) public onlyOwner

{

_publicLockVersions[impl] = version;

_publicLockImpls[version] = impl;

11th of February 2022 - byterocket.com Page 7 of 18



Smart Contract Audit Report - Unlock Protocol

if (publicLockLatestVersion < version)

publicLockLatestVersion = version;

emit UnlockTemplateAdded(impl, version);

}

Recommendation:
Consider removing any versions that are higher than what is currently being added.

[LOW SEVERITY] L.4 - Users can upgrade to a lock version that is “too high”
Location: Unlock.sol - Line 187 - 193

Description:
The upgradeLock() function does not verify whether the version that the user upgrades
their lock to is the current latest version stored in publicLockLatestVersion. Due to the
finding in L.3, it would be possible to still have faulty implementations in the array of
implementations.

These are the affected lines of code:

function addLockTemplate(address impl, uint16 version) public onlyOwner

{

_publicLockVersions[impl] = version;

_publicLockImpls[version] = impl;

if (publicLockLatestVersion < version)

publicLockLatestVersion = version;

emit UnlockTemplateAdded(impl, version);

}

Recommendation:
Consider checking whether the version that a user upgrades to is safe. This can be done
by fixing L.3 or adding another code section that addresses this somehow.

[LOW SEVERITY] L.5 - Deprecated function delivers unexpected returns
Location: Unlock.sol - Line 208 - 228

Description:
The legacy function createLock() disregards the _salt parameter since it has been
deprecated. This leads to the fact that the output of this function is not deterministic
anymore, which old implementations could rely on.

11th of February 2022 - byterocket.com Page 8 of 18



Smart Contract Audit Report - Unlock Protocol

These are the affected lines of code:

function createLock(

uint _expirationDuration,

address _tokenAddress,

uint _keyPrice,

uint _maxNumberOfKeys,

string calldata _lockName,

bytes12 // _salt

) public returns(address) {

Recommendation:
We would think that this function should just revert since otherwise unaware developers
could run into issues here due to the now non-deterministic nature of the
implementation of the function.

[LOW SEVERITY] L.6 - Unextendable key after the duration becomes infinite
Location: MixinPurchase.sol - Line 100 - 103

Description:
If the manager of the key sets a key with a previously not-infinite expiration date to an
expiration date with an infinite value, the user won’t be able to extend the key while it’s
not expired. It’s valid to check if the expiration timestamp of a key is infinite to prohibit
unnecessary extensions, but users might run into issues here due to this edge case.

These are the affected lines of code:

require(toKey.expirationTimestamp != type(uint).max, 'A valid

non-expiring key can not be purchased twice');

[...]

newTimeStamp = toKey.expirationTimestamp + expirationDuration;

Recommendation:
Allow users that have a timestamp that is running out to extend their purchased lock to
also be of infinite length.

[LOW SEVERITY] L.7 - Data Argument has overloaded Use-Cases
Location: MixinPurchase.sol - Line 58 - 161

Description:
The _data argument given by the user in the purchase() function is used for the
onKeyPurchases-Hook and the keyPurchasePrice-Hook. This makes it impossible for a
lock to use both hooks, as the data argument would be overloaded with use-cases.
Additionally, the functions support inputs of different lengths.

11th of February 2022 - byterocket.com Page 9 of 18



Smart Contract Audit Report - Unlock Protocol

These are the affected lines of code:

uint inMemoryKeyPrice = _purchasePriceFor(_recipient, _referrer, _data);

[...]

onKeyPurchaseHook.onKeyPurchase(msg.sender, _recipient, _referrer,

_data, inMemoryKeyPrice, pricePaid);

Recommendation:
Consider adding one argument per hook to separate concerns.

[LOW SEVERITY] L.8 - FeeOnTransfer tokens not supported
Location: Throughout the project

Description:
In the creation of a lock, a user can set the token address used for payments. This
includes FeeOnTransfer tokens, however, the purchase function in MixinPurchase does
not handle these correctly.

These are the affected lines of code:

uint inMemoryKeyPrice = _purchasePriceFor(_recipient, _referrer, _data);

[...]

onKeyPurchaseHook.onKeyPurchase(msg.sender, _recipient, _referrer,

_data, inMemoryKeyPrice, pricePaid);

Recommendation:
Consider adding either a big warning stating that these tokens are not supported (yet)
or disabling payments with these tokens by using an if check, verifying the transferred
balances before and after the calls.

[LOW SEVERITY] L.9 - Users can create uninitialized locks
Location: Unlock.sol - Line 246 - 265

Description:
Users can create uninitialized locks, as the data argument is provided by the user. Such
an initialized lock would still be added to the locks array and from there on taken as
initialized. A user would be able to create such an uninitialized lock by encoding a call to
the fallback function of the contract or any other function that executes without a revert.

These are the affected lines of code:

TransparentUpgradeableProxy proxy = new

11th of February 2022 - byterocket.com Page 10 of 18



Smart Contract Audit Report - Unlock Protocol

TransparentUpgradeableProxy(publicLockAddress, proxyAdminAddress, data);

Recommendation:
Consider verifying whether the created lock is actually initialized. This could for example
be done by wrapping a call to the initialize function in a try-catch after it’s initialization.

[NON-CRITICAL] NC.1 - Using SafeMath with Solidity >= 0.8.0
Location: DiscountCodeHook.sol - Line 17

Description:
The smart contract uses SafeMath while at the same time being implemented in Solidity
version 0.8.2. Solidity has had an inbuilt overflow handling since version 0.8.0. The
corresponding calls in lines 73 & 74 below are not unsafe but lead to more gas spendings
than necessary.

These are the affected lines of code:

uint discount = minKeyPrice.mul(discountBP).div(10000);

minKeyPrice = minKeyPrice.sub(discount);

Recommendation:
Remove the SafeMath library and replace the mul and sub calls with the regular
arithmetic calls.

[NON-CRITICAL] NC.2 - Emitting an event twice
Location: MixinGrantKeys.sol - Line 47 - 48

Description:
The function _setKeyManagerOf() is called in line 47, which in itself emits the event
KeyManagerChanged(). This event, however, is additionally emitted after this call in line
48. Furthermore, if the key’s manager is not changed in _setKeyManagerOf(), the event
would be erroneously emitted anyway.

These are the affected lines of code:

emit KeyManagerChanged(idTo, keyManager);

Recommendation:
Remove the emitted event in line 48, since it is unnecessary.

11th of February 2022 - byterocket.com Page 11 of 18



Smart Contract Audit Report - Unlock Protocol

[NON-CRITICAL] NC.3 - Lock name can be updated to empty string
Location: MixinLockMetadata.sol - Line 54 - 60

Description:
The updateLockName() function does not check whether the _lockName parameter is
an empty string. Henceforth, the lock can be updated to have no name.

These are the affected lines of code:

function updateLockName(string calldata _lockName) external

onlyLockManager {

name = _lockName;

}

Recommendation:
It is usually best practice to prevent users from doing something that shouldn’t be done.
We would argue that there shouldn’t be a lock that has no name.

[NON-CRITICAL] NC.4 - Documentation is wrong
Location: MixinLockMetadata.sol - Line 27 - 28

Description:
The documentation notes that the lock name defaults to a certain value, which is not the
case.
These are the affected lines of code:

/// A descriptive name for a collection of NFTs in this contract.

Defaults to ‘Unlock-Protocol’ but is settable by lock owner

string public name;

Recommendation:
Either add a function that does provide a default value for the name or adapt the
documentation to what’s actually the case.

[NON-CRITICAL] NC.5 - Use of deprecated library functions
Location: MixinRoles.sol - Line 30 - 35
Description:
The _initializeMixinRoles() function is using the _setupRole() function to set up
roles. This function has been deprecated, as referenced here. The new function is called
_grantRole().

11th of February 2022 - byterocket.com Page 12 of 18

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol#L183


Smart Contract Audit Report - Unlock Protocol

These are the affected lines of code:

_setupRole(LOCK_MANAGER_ROLE, sender);

Recommendation:
While _setupRole() internally just calls _grantRole(), it just makes sense to directly call
_grantRole().

[NON-CRITICAL] NC.6 - Inconsistent error messages
Location: Throughout the project

Description:
The smart contracts are using different, inconsistent error messages throughout the
project. Additionally, some of the error messages are quite long.

These are some affected lines of code:

“MixinRoles: caller does not have the LockManager role”

“INVALID_ADDRESS”

“Transfer to xDAI disabled”

“TRANSFER_FROM: NOT_KEY_OWNER”

Recommendation:
Decide on one format for the error messages and implement it throughout the project if
possible. Consider shortening revert strings to fit in 32 bytes, since this will decrease gas
costs for deployment and gas costs when the revert condition has been met.

[NON-CRITICAL] NC.7 - Reference link is off
Location: UnlockUtils.sol - Line 6

Description:
The provided link where the implementation is borrowed from is not directed to the right
code section anymore.

https://github.com/oraclize/ethereum-api/blob/master/oraclizeAPI_0.5.sol#L943

Recommendation:
Update the link, and if possible to one that does not reference the ever-changing master
branch.

11th of February 2022 - byterocket.com Page 13 of 18

https://github.com/oraclize/ethereum-api/blob/master/oraclizeAPI_0.5.sol#L943


Smart Contract Audit Report - Unlock Protocol

[NON-CRITICAL] NC.8 - Excessive gas usage in edge case
Location: Unlock.sol - Line 345

Description:
In the edge case of the oracle being less than 24 hours old after its deployment, it will
always return zero, hence the valueInETH will be zero. In this edge case, all of the
following code can be skipped, since it doesn’t do anything meaningful.

These are the affected lines of code:

valueInETH = oracle.updateAndConsult(tokenAddress, _value, weth);

Recommendation:
If there is ever a possibility of the oracle being less than 24 hours old, we would suggest
catching this behavior.

[NON-CRITICAL] NC.9 - BaseFee is hardcoded
Location: Unlock.sol - Line 371

Description:
For chains that have no baseFee implemented yet, it is hardcoded to 100. The nature and
parameters of current blockchains are changing rapidly, so it might become necessary
for this to change at some point.

These are the affected lines of code:

try this.networkBaseFee() returns (uint _basefee) {

// no assigned value

if(_basefee == 0) {

baseFee = 100;

} else {

baseFee = _basefee;

}

} catch {

// block.basefee not supported

baseFee = 100;

}

Recommendation:
Allow the contract owner to update the baseFee if necessary.

11th of February 2022 - byterocket.com Page 14 of 18



Smart Contract Audit Report - Unlock Protocol

[NON-CRITICAL] NC.10 - Use of constant instead of immutable
Location: MixinRoles.sol - Line 12 - 13

Description:
Access roles marked as constant result in computing the keccak256 operation each
time the variable is used because assigned operations for constant variables are
re-evaluated every time.

These are the affected lines of code:

bytes32 public constant LOCK_MANAGER_ROLE = keccak256("LOCK_MANAGER");

bytes32 public constant KEY_GRANTER_ROLE = keccak256("KEY_GRANTER");

Recommendation:
Changing the variables to immutable results in computing the hash only once on
deployment, leading to gas savings.

[NON-CRITICAL] NC.11 - Wrong function name
Location: Unlock.sol - Line 511

Description:
The name of the function does not reflect the documentation as well as what the
function actually does. It does not reset the values, it allows the owner to set them to
arbitrary values.

These are the affected lines of code:

// Allows the owner to change the value tracking variables as needed.

function resetTrackedValue(

uint _grossNetworkProduct,

uint _totalDiscountGranted

) external onlyOwner {

grossNetworkProduct = _grossNetworkProduct;

totalDiscountGranted = _totalDiscountGranted;

emit ResetTrackedValue(_grossNetworkProduct, _totalDiscountGranted);

}

Recommendation:
Consider changing the function name in future updates/deployments.

11th of February 2022 - byterocket.com Page 15 of 18



Smart Contract Audit Report - Unlock Protocol

[NON-CRITICAL] NC.12 - Unnecessary naming of return values
Location: MixinPurchase.sol - Line 41, UnlockUtils.sol - Line 16 & 24

Description:
There are multiple occurrences where return variables are named but not used with their
names. This allocates an unused storage slot during the execution, which is unnecessary.

Recommendation:
Consider removing the name of the return values or use them accordingly.

11th of February 2022 - byterocket.com Page 16 of 18



Smart Contract Audit Report - Unlock Protocol

3. Protocol/Logic Review
Part of our audits are also analyses of the protocol and its logic. The byterocket team
went through the implementation and documentation of the implemented protocol.

The repository itself contained tests and documentation. Even if there was a crucial part
of the documentation missing at the time of our audit (a necessary yarn build in the
root folder), we found the documentation to be very helpful. The online documentation,
as well as the inline documentation, is sufficient to fully understand the intended
protocol that is being implemented.

We found the provided unit tests that are coming with the repository execute without
any issues and cover the most important parts of the protocol.

According to our analysis, the protocol and logic are working as intended, given that the
findings listed in section (2) with the severity of low or medium are fixed.

We were not able to discover any additional problems in the protocol implemented in
the smart contract.

11th of February 2022 - byterocket.com Page 17 of 18



Smart Contract Audit Report - Unlock Protocol

4. Summary
During our code review (which was done manually and automated), we found 23 bugs or
flaws, with 12 non-critical, 9 of low severity, and 1 of medium severity. Our automated
systems and review tools did not find any additional ones.

The protocol review and analysis did neither uncover any game-theoretical nature
problems nor any other functions prone to abuse.

In general, there are some improvements that can be made, but we are very happy with
the overall quality of the code and its documentation. The developers have been very
responsive and were able to answer any questions that we had.

11th of February 2022 - byterocket.com Page 18 of 18


