
PROJECT

Ʉnlock Protocol

CLIENT

Ʉnlock
DATE

January 2022

REVIEWERS

Andrei Simion
@andreiashu

Details
Issues Summary
Executive summary

Review process
Scope
Trust Model

Lock owners can run their locks without reliance on the Unlock Protocol
Privileged Roles and Ownership

Recommendations
Increase the number of tests

Issues
A compromised Unlock.sol contract can cause PublicLockV9.purchase() to fail
through an out of gas attack (or bug)
Lack of validation for addLockTemplate can break Locks upgrades;
documentation out of sync with code;
Public Locks can use the upgradeLock even if they are not deployed through
the Unlock Protocol
configUnlock does not validate arguments; can lead to incorrect accounting in
other parts of the system
Division by zero in recordKeyPurchase when grossNetworkProduct is 0
Documentation typos; code minor fixes;

Artifacts
Surya
Files Description Table
Contracts Description Table
Legend
Tests

License

Client Ʉnlock
Date January 2022
Reviewers Andrei Simion (@andreiashu)
Repository: Ʉnlock Protocol
Commit hash b709f19aa3217202caa3414247222850355b1dbb

Table of Contents

Details

https://twitter.com/andreiashu
http://0.0.0.0:8642/git@github.com:unlock-protocol/unlock.git

Technologies
Solidity
Node.JS

SEVERITY OPEN CLOSED

Informational 0 0

Minor 4 0

Medium 2 0

Major 0 0

This report represents the results of the engagement with Ʉnlock to review Ʉnlock
Protocol.

The review was conducted over the course of 1 week from January 24th to January
28th, 2022. A total of 5 person-days were spent reviewing the code.

The design of the Unlock Protocol platform is thoroughly thought out. Furthermore, the
team tried to reach a high level of resilience and decentralization (more on this in the
Trust Model section).

A user wanting to accept payments from their subscribers can use Unlock Protocol to
deploy a PublicLock . This contract acts as a membership gateway for users who wish
to access paid content.

The Unlock contract is responsible mainly for the deployment and upgrade of Public
Locks but otherwise is not essential for a Public Lock to run correctly or accept
payments for memberships. In this respect, the team took precautions to ensure that if
the Unlock contract gets compromised or suffers a malfunction, the deployed locks are
not affected:

 try unlockProtocol.recordKeyPurchase(inMemoryKeyPrice, _referrer)

 {}

 catch {

 // emit missing unlock

 emit UnlockCallFailed(address(this), address(unlockProtocol));

 }

Issues Summary

Executive summary

code extract from PublicLockV9.sol - the latest stable version of Public Lock
template implementation at the time of writing. If there is an issue in the main
 Unlock.sol contract, the purchase() function will continue to function as expected.

The current Public Lock code does not protect against an out of gas attack in the
Unlock contract. This issue I identified and raised as part of this review.

At the beginning of the week, I spent time getting more familiar with the code and the
protocol's design.

I started going through the ERC20Patched.sol file. For historical reasons the team had to
flatten the code for their ERC20 contract code - most of the code is OpenZeppelin
libraries apart from some changes to the memory layout.

The bulk of the time was spent on the Unlock.sol contract. Users interact with this
contract when deploying a new PublicLock and upgrade to different versions of a Lock
template implementation.

Towards the end of the week, I continued to review the code while creating an overview
of the architecture to help me better understand the whole trust model.

The initial review focused on the Ʉnlock Protocol repository, identified by the commit
hash b709f19aa3217202caa3414247222850355b1dbb .

I focused on manually reviewing the codebase, searching for security issues such as,
but not limited to, re-entrancy problems, transaction ordering, block timestamp
dependency, exception handling, call stack depth limitation, integer overflow/underflow,
self-destructible contracts, unsecured balance, use of origin, costly gas patterns,
architectural problems, code readability.

Includes:

code/smart-contracts/contracts/ERC20Patched.sol
code/smart-contracts/contracts/UnlockDiscountTokenV2.sol
code/smart-contracts/contracts/UnlockDiscountTokenV3.sol
code/smart-contracts/contracts/Unlock.sol
code/smart-contracts/contracts/utils/UnlockInitializable.sol
code/smart-contracts/contracts/utils/UnlockOwnable.sol

Review process

Scope

http://0.0.0.0:8642/git@github.com:unlock-protocol/unlock.git

Lock managers can receive payments even with a compromised or malfunctioning
Unlock Protocol (Unlock.sol) contract. I raised an issue about an edge case whereby a
malicious takeover of Unlock.sol contract can perform an out of gas attack on Public
Locks. That being said, in general, publick locks continue to receive payments
regardless of the state of Unlock Protocol.

A the time of writing, the main Unlock.sol contract in the system is controlled by the
team's multi-sig. This is done for ease of use and the ability to respond quickly to
incidents. The team plans to move to a DAO model of governance once the system
becomes more stable and battle tested.

This is a common strategy in DeFi projects: a team will start with a multi-stig that gives
flexibility, ease of use, and quick response to incidents. Then, as the project matures, it
transitions to a DAO model, a more decentralized way of running it.

I identified a few possible general improvements that are not security issues during the
review, which will bring value to the developers and the community reviewing and using
the product.

A good rule of thumb is to have 100% test coverage. This does not guarantee the lack
of security problems, but it means that the desired functionality behaves as intended.
The negative tests also bring value because not allowing some actions to happen is also
part of the desired behavior.

Trust Model

Lock owners can run their locks without reliance on
the Unlock Protocol

Privileged Roles and Ownership

Recommendations

Increase the number of tests

Issues

Status Open Severity Medium

Description

A user purchase is performed through the purchase function within a PublicLock
contract (the latest version at the time of writing being PublicLockV9):

code/packages/contracts/src/contracts/PublicLock/PublicLockV9.sol#L3172-L3181

 function purchase(

 uint256 _value,

 address _recipient,

 address _referrer,

 address _keyManager,

 bytes calldata _data

) external payable

 onlyIfAlive

 notSoldOut

 {

This function calls the recordKeyPurchase on the Unlock contract which tallies the sales
for the Public Lock but also distributes UDT token bonuses:

code/smart-contracts/contracts/Unlock.sol#L323-L337

 /**

 * This function keeps track of the added GDP, as well as grants of discount tokens

 * to the referrer, if applicable.

 * The number of discount tokens granted is based on the value of the referal,

 * the current growth rate and the lock's discount token distribution rate

 * This function is invoked by a previously deployed lock only.

 * TODO: actually implement

 */

 function recordKeyPurchase(

 uint _value,

 address _referrer

)

 public

 onlyFromDeployedLock()

 {

To make the purchase() function more resilient and not depend on the well functioning
of the Unlock contract, the team uses a try / catch block to call the
 Unlock.recordKeyPurchase() . This is a good approach and provides deployed

A compromised Unlock.sol contract can cause
 PublicLockV9.purchase() to fail through an out of gas
attack (or bug)

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/119daf18f1550525d0dfa853cdd04b907540044c/code/packages/contracts/src/contracts/PublicLock/PublicLockV9.sol#L3172-L3181
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/119daf18f1550525d0dfa853cdd04b907540044c/code/smart-contracts/contracts/Unlock.sol#L323-L337
https://github.com/akiratechhq/review-unlock-protocol-2022-01/issues/6

PublicLock owners additional safety from a compromised or malfunctioning Unlock
contract:

code/packages/contracts/src/contracts/PublicLock/PublicLockV9.sol#L3238-L3243

 try unlockProtocol.recordKeyPurchase(inMemoryKeyPrice, _referrer)

 {}

 catch {

 // emit missing unlock

 emit UnlockCallFailed(address(this), address(unlockProtocol));

 }

The issue however is that a malicious actor having access to the Unlock contract can
cause the purchase function to run out of gas by implementing a computationally gas
expensive loop within the Unlock.recordKeyPurchase() function.

Recommendation

Update the call to recordKeyPurchase() to limit the amount of gas the called function
can use and thus limit the impact an attack on Unlock can have on already deployed
locks.

Status Open Severity Medium

Description

 addLockTemplate is used by the owner of the protocol to:

add new PublicLock template implementations mapped to specific versions
update existing PublicLock template implementations to new versions

code/smart-contracts/contracts/Unlock.sol#L182-L190

 /**

 * @dev Registers a new PublicLock template immplementation

 * The template is identified by a version number

 * Once registered, the template can be used to upgrade an existing Lock

 */

 function addLockTemplate(address impl, uint16 version) public onlyOwner {

 _publicLockVersions[impl] = version;

 _publicLockImpls[version] = impl;

 if (publicLockLatestVersion < version) publicLockLatestVersion = version;

There are several issues with the way the code and documentation are written:

Lack of validation for addLockTemplate can break Locks
upgrades; documentation out of sync with code;

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/119daf18f1550525d0dfa853cdd04b907540044c/code/packages/contracts/src/contracts/PublicLock/PublicLockV9.sol#L3238-L3243
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L182-L190
https://github.com/akiratechhq/review-unlock-protocol-2022-01/issues/3

lack of argument checks means that a template implementation can be set to
version 0 . If a Lock will try to upgrade to that specific implementation, the
operation will fail because upgradeLock considers version 0 as invalid:

code/smart-contracts/contracts/Unlock.sol#L283-L285

 // make our upgrade

 address impl = _publicLockImpls[version];

 require(impl != address(0), "this version number has no corresponding lock template");

lack of argument checks means that a template implementation can be set to a
non-sequential one. If a Lock will try to upgrade to that specific implementation, the
operation will fail because upgradeLock only allows upgrades to higher, sequential
version values:

code/smart-contracts/contracts/Unlock.sol#L278-L281

 // check version

 IPublicLock lock = IPublicLock(lockAddress);

 uint16 currentVersion = lock.publicLockVersion();

 require(version == currentVersion + 1, 'version error: only +1 increments are allowed');

the documentation is outdated and doesn't fully cover the whole functionality that
the code provides (ie. the updating part):

code/smart-contracts/contracts/Unlock.sol#L183-L185

 * @dev Registers a new PublicLock template immplementation

 * The template is identified by a version number

 * Once registered, the template can be used to upgrade an existing Lock

Recommendation

My recommendation here is to add sanity checks to this owner-operated function.

In terms of gas costs, I outline below an example whereby simply adding a require
statement that would fix one of the issues outlined above, will add 29 gas to the
function execution costs:

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

contract Scratch0 {

 mapping(uint16 => address) private _publicLockImpls;

 mapping(address => uint16) private _publicLockVersions;

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L283-L285
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L278-L281
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L183-L185

 // gas 66686

 function config(address impl, uint16 version) public {

 _publicLockVersions[impl] = version;

 _publicLockImpls[version] = impl;

 }

}

contract Scratch1 {

 mapping(uint16 => address) private _publicLockImpls;

 mapping(address => uint16) private _publicLockVersions;

 // gas 66715

 function config(address impl, uint16 version) public {

 require(version > 0);

 _publicLockVersions[impl] = version;

 _publicLockImpls[version] = impl;

 }

}

Status Open Severity Minor

Description

 upgradeLock function can be used by PublicLock managers to upgrade to the next
version of the protocol:

code/smart-contracts/contracts/Unlock.sol#L267-L276

 /**

 * @dev Upgrade a Lock template implementation

 * @param lockAddress the address of the lock to be upgraded

 * @param version the version number of the template

 */

 function upgradeLock(address payable lockAddress, uint16 version) external returns(address) {

 require(proxyAdminAddress != address(0), "proxyAdmin is not set");

 // check perms

 require(_isLockManager(lockAddress, msg.sender) == true, "caller is not a manager of this lock");

Public Locks can use the upgradeLock even if they are
not deployed through the Unlock Protocol

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/119daf18f1550525d0dfa853cdd04b907540044c/code/smart-contracts/contracts/Unlock.sol#L267-L276
https://github.com/akiratechhq/review-unlock-protocol-2022-01/issues/7

Currently, there is no check to ensure that the lock being upgraded has been originally
deployed through the Unlock contract.

Recommendation

Use the onlyFromDeployedLock modifier to only allow locks deployed with the Unlock
Protocol to use the upgrade function:

code/smart-contracts/contracts/Unlock.sol#L58-L61

 modifier onlyFromDeployedLock() {

 require(locks[msg.sender].deployed, 'ONLY_LOCKS');

 _;

 }

Status Open Severity Minor

Description

 configUnlock function can be used by the multisig wallet or DAO address to update the
config values of the protocol:

code/smart-contracts/contracts/Unlock.sol#L450-L462

 function configUnlock(

 address _udt,

 address _weth,

 uint _estimatedGasForPurchase,

 string calldata _symbol,

 string calldata _URI,

 uint _chainId

) external

 onlyOwner

 {

 udt = _udt;

 weth = _weth;

 estimatedGasForPurchase = _estimatedGasForPurchase;

The issue however is that there are no sanity checks on the new values. There are
several side effects of the owner setting unwanted config values due to human error.

If weth is set to a nil address the grossNetworkProduct state var will not account for the
correct _value purchased in the recordKeyPurchase function:

 configUnlock does not validate arguments; can lead to
incorrect accounting in other parts of the system

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/119daf18f1550525d0dfa853cdd04b907540044c/code/smart-contracts/contracts/Unlock.sol#L58-L61
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L450-L462
https://github.com/akiratechhq/review-unlock-protocol-2022-01/issues/5

code/smart-contracts/contracts/Unlock.sol#L341-L355

 if(tokenAddress != address(0) && tokenAddress != weth) {

 // If priced in an ERC-20 token, find the supported uniswap oracle

 IUniswapOracle oracle = uniswapOracles[tokenAddress];

 if(address(oracle) != address(0)) {

 valueInETH = oracle.updateAndConsult(tokenAddress, _value, weth);

 }

 }

 else {

 // If priced in ETH (or value is 0), no conversion is required

 valueInETH = _value;

 }

 grossNetworkProduct = grossNetworkProduct + valueInETH;

 // If GNP does not overflow, the lock totalSales should be safe

 locks[msg.sender].totalSales += valueInETH;

Other values that I investigated but are actually left without validation on purpose:

 udt , and estimatedGasForPurchase can both be set to their nil value (nil address
and zero) by the team in order to disable the distribution of tokens on different
chains;
if the chainId is set to 0 the wrong number of tokens will be distributed on L2
chains. This variable is left unchecked on purpose by the team because during
tests one wants to be able to set the chain to 0 to set the system to behave as on
mainnet.

Recommendation

Implement sanity checks as much as possible on the values passed to configUnlock .

Status Open Severity Minor

Description

 recordKeyPurchase is called from locks in order to update specific accounting-related
variables:

code/smart-contracts/contracts/Unlock.sol#L353

 grossNetworkProduct = grossNetworkProduct + valueInETH;

but also to distribute or mint UDT tokens to lock owners:

Division by zero in recordKeyPurchase when
 grossNetworkProduct is 0

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L341-L355
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L353
https://github.com/akiratechhq/review-unlock-protocol-2022-01/issues/2

code/smart-contracts/contracts/Unlock.sol#L409-L416

 // Only distribute if there are enough tokens

 IMintableERC20(udt).transfer(_referrer, tokensToDistribute - devReward);

 IMintableERC20(udt).transfer(owner(), devReward);

 }

 } else {

 // No distribnution

 IMintableERC20(udt).mint(_referrer, tokensToDistribute - devReward);

 IMintableERC20(udt).mint(owner(), devReward);

In order to determine the number of tokes to transfer to lock owners, there are 2
formulas that are used, depending on which chain the protocol is, that involves dividing
by the grossNetworkProduct :

code/smart-contracts/contracts/Unlock.sol#L389-L392

The grossNetworkProduct can be re-set to 0 by the owner:

code/smart-contracts/contracts/Unlock.sol#L510-L518

 // Allows the owner to change the value tracking variables as needed.

 function resetTrackedValue(

 uint _grossNetworkProduct,

 uint _totalDiscountGranted

) external

 onlyOwner

 {

 grossNetworkProduct = _grossNetworkProduct;

 totalDiscountGranted = _totalDiscountGranted;

Either because the owner reset the value of grossNetworkProduct or the protocol has yet
to have any purchases recorded when its value is 0, the calculation of maxTokens will
throw because of a division by zero error:

code/smart-contracts/contracts/Unlock.sol#L389-L392

 maxTokens = IMintableERC20(udt).balanceOf(address(this)) * valueInETH / (2 + 2 * valueInETH /

 } else {

 // Mainnet: we mint new token using log curve

 maxTokens = IMintableERC20(udt).totalSupply() * valueInETH / 2 / grossNetworkProduct;

 maxTokens = IMintableERC20(udt).balanceOf(address(this)) * valueInETH / (2 + 2 * valueInETH /

 } else {

 // Mainnet: we mint new token using log curve

 maxTokens = IMintableERC20(udt).totalSupply() * valueInETH / 2 / grossNetworkProduct;

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L409-L416
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L389-L392
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L510-L518
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L389-L392

This can happen when the above condition is met and when valueInEth is also 0 for
non-ETH and non-WETH tokens that do not have an oracle:

code/smart-contracts/contracts/Unlock.sol#L341-L353

 if(tokenAddress != address(0) && tokenAddress != weth) {

 // If priced in an ERC-20 token, find the supported uniswap oracle

 IUniswapOracle oracle = uniswapOracles[tokenAddress];

 if(address(oracle) != address(0)) {

 valueInETH = oracle.updateAndConsult(tokenAddress, _value, weth);

 }

 }

 else {

 // If priced in ETH (or value is 0), no conversion is required

 valueInETH = _value;

 }

 grossNetworkProduct = grossNetworkProduct + valueInETH;

Recommendation

Check for 0 value grossNetworkProduct before performing the calculations in order to
avoid a revert in this function.

Status Open Severity Minor

Description

Documentation typo nimbers -> numbers

code/smart-contracts/contracts/Unlock.sol#L201

 * @param _maxNumberOfKeys the maximum nimbers of keys to be edited

Documentation type dicount -> discount :

code/smart-contracts/contracts/Unlock.sol#L9

 * 2. Grant dicount tokens to users making referrals and/or publishers granting discounts.

Remove obsolete comment: https://github.com/akiratechhq/review-unlock-
protocol-2022-
01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-
contracts/contracts/Unlock.sol#L329

Parenthesis can be omitted for modifiers that do not require arguments:

Documentation typos; code minor fixes;

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L341-L353
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L201
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L9
https://github.com/akiratechhq/review-unlock-protocol-2022-01/issues/1

code/smart-contracts/contracts/Unlock.sol#L141-L146

 function initialize(

 address _unlockOwner

)

 public

 initializer()

 {

code/smart-contracts/contracts/Unlock.sol#L331-L336

 function recordKeyPurchase(

 uint _value,

 address _referrer

)

 public

 onlyFromDeployedLock()

code/smart-contracts/contracts/Unlock.sol#L428-L434

 function recordConsumedDiscount(

 uint /* _discount */,

 uint /* _tokens */

)

 public

 view

 onlyFromDeployedLock()

In recordKeyPurchase the condition for checking the value of the purchase contains
about 80 lines of code:

code/smart-contracts/contracts/Unlock.sol#L338-L343

 if(_value > 0) {

 uint valueInETH;

 address tokenAddress = IPublicLock(msg.sender).tokenAddress();

 if(tokenAddress != address(0) && tokenAddress != weth) {

 // If priced in an ERC-20 token, find the supported uniswap oracle

 IUniswapOracle oracle = uniswapOracles[tokenAddress];

This can be rewritten to make the code easier to follow but returning early:

if(_value == 0) {

 return;

}

... rest of the code that relies on a non-zero `_value`

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L141-L146
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L331-L336
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L428-L434
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L338-L343

the documentation seems to be outdated since in this case, the _value cannot be
 0 :

code/smart-contracts/contracts/Unlock.sol#L348-L350

 else {

 // If priced in ETH (or value is 0), no conversion is required

 valueInETH = _value;

 _value is checked here:

code/smart-contracts/contracts/Unlock.sol#L338

 if(_value > 0) {

Sūrya is a utility tool for smart contract systems. It provides a number of visual outputs
and information about the structure of smart contracts. It also supports querying the
function call graph in multiple ways to aid in the manual inspection and control flow
analysis of contracts.

surya mdreport report.md code/smart-contracts/contracts/{Unlock.sol,ERC20Patched.sol,UnlockDiscountTokenV2

File Name SHA-1 Hash

code/smart-contracts/contracts/Unlock.sol 123c0f2cb193afd49b5c578aee3519c

code/smart-
contracts/contracts/ERC20Patched.sol

dc3af7e8b18dd7ea963dead6f0fcc34

code/smart-
contracts/contracts/UnlockDiscountTokenV2.sol

ff11e9f7237055b5e9f1bb7d0657d84

code/smart-
contracts/contracts/UnlockDiscountTokenV3.sol

32397390ca7a4e6c549d5caaff1d97f

Artifacts

Surya

Files Description Table

Contracts Description Table

https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L348-L350
https://github.com/akiratechhq/review-unlock-protocol-2022-01/blob/9ad4bee14829f665e05598da4124eb9a92831e94/code/smart-contracts/contracts/Unlock.sol#L338

Contract Type

└ Function Name V

Unlock Implementation
Unloc

Unlo

└ initialize P

└ initializeProxyAdmin P

└ _deployProxyAdmin P

└ publicLockVersions Ex

└ publicLockImpls Ex

└ addLockTemplate P

└ createLock P

└ createUpgradeableLock P

└ upgradeLock Ex

└ _isLockManager P

└ computeAvailableDiscountFor P

└ networkBaseFee Ex

└ recordKeyPurchase P

└ recordConsumedDiscount P

└ unlockVersion Ex

└ configUnlock Ex

└ setLockTemplate Ex

└ setOracle Ex

└ resetTrackedValue Ex

└ getGlobalBaseTokenURI Ex

└ getGlobalTokenSymbol Ex

Roles Library

└ add In

└ remove In

└ has In

Contract Type

IERC20PermitUpgradeable Interface

└ permit Ex

└ nonces Ex

└ DOMAIN_SEPARATOR Ex

IERC20Upgradeable Interface

└ totalSupply Ex

└ balanceOf Ex

└ transfer Ex

└ allowance Ex

└ approve Ex

└ transferFrom Ex

IERC20MetadataUpgradeable Interface IERC20

└ name Ex

└ symbol Ex

└ decimals Ex

Initializable Implementation

ContextUpgradeable Implementation In

└ __Context_init In

└ __Context_init_unchained In

└ _msgSender In

└ _msgData In

ERC20Upgradeable Implementation

Ini
Contex
IERC20

IERC20Met

└ __ERC20_init In

└ __ERC20_init_unchained In

└ decimals P

Contract Type

└ totalSupply P

└ balanceOf P

└ transfer P

└ allowance P

└ approve P

└ transferFrom P

└ increaseAllowance P

└ decreaseAllowance P

└ _transfer In

└ _mint In

└ _burn In

└ _approve In

└ _beforeTokenTransfer In

└ _afterTokenTransfer In

ECDSAUpgradeable Library

└ recover In

└ recover In

└ recover In

└ toEthSignedMessageHash In

└ toTypedDataHash In

EIP712Upgradeable Implementation In

└ __EIP712_init In

└ __EIP712_init_unchained In

└ __EIP712_init_unsafe In

└ _domainSeparatorV4 In

└ _buildDomainSeparator P

└ _hashTypedDataV4 In

└ _EIP712NameHash In

Contract Type

└ _EIP712VersionHash In

CountersUpgradeable Library

└ current In

└ increment In

└ decrement In

└ reset In

ERC20PermitUpgradeable Implementation

Ini
ERC20

IERC20Pe
EIP712

└ __ERC20Permit_init In

└ __ERC20Permit_init_unchained In

└ __ERC20Permit_init_unsafe In

└ permit P

└ nonces P

└ DOMAIN_SEPARATOR Ex

└ _useNonce In

MathUpgradeable Library

└ max In

└ min In

└ average In

└ ceilDiv In

SafeCastUpgradeable Library

└ toUint224 In

└ toUint128 In

└ toUint96 In

└ toUint64 In

└ toUint32 In

Contract Type

└ toUint16 In

└ toUint8 In

└ toUint256 In

└ toInt128 In

└ toInt64 In

└ toInt32 In

└ toInt16 In

└ toInt8 In

└ toInt256 In

ERC20VotesUpgradeable Implementation
Ini

ERC20Pe

└ __ERC20Votes_init_unchained In

└ __ERC20Votes_init_unsafe In

└ checkpoints P

└ numCheckpoints P

└ delegates P

└ getVotes P

└ getPastVotes P

└ getPastTotalSupply P

└ _checkpointsLookup P

└ delegate P

└ delegateBySig P

└ _maxSupply In

└ _mint In

└ _burn In

└ _afterTokenTransfer In

└ _delegate In

└ _moveVotingPower P

└ _writeCheckpoint P

Contract Type

└ _add P

└ _subtract P

ERC20VotesCompUpgradeable Implementation
Ini

ERC20Vo

└ __ERC20VotesComp_init_unchained In

└ getCurrentVotes Ex

└ getPriorVotes Ex

└ _maxSupply In

MinterRoleUpgradeable Implementation
Ini

Contex

└ initialize P

└ isMinter P

└ addMinter P

└ renounceMinter P

└ _addMinter In

└ _removeMinter In

ERC20DetailedUpgradeable Implementation
Ini

IERC20

└ initialize P

└ name P

└ symbol P

└ decimals P

ERC20MintableUpgradeable Implementation
Ini

ERC20
MinterRo

└ initialize P

└ mint P

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

Unlock

Contract Type

UnlockDiscountTokenV2 Implementation
ERC20Mint
ERC20Deta

ERC20Votes

└ initialize P

└ initialize2 P

└ name P

└ symbol P

└ decimals P

└ _mint In

└ _burn In

└ _afterTokenTransfer In

UnlockDiscountTokenV3 Implementation UnlockD

└ _beforeTokenTransfer In

└ _transfer In

Legend

Graphs

UnlockDiscountTokenV3

 + Unlock (UnlockInitializable, UnlockOwnable)

 - [Pub] initialize #

 - modifiers: initializer

 - [Pub] initializeProxyAdmin #

 - [Prv] _deployProxyAdmin #

 - [Ext] publicLockVersions

 - [Ext] publicLockImpls

 - [Pub] addLockTemplate #

 - modifiers: onlyOwner

 - [Pub] createLock #

 - [Pub] createUpgradeableLock #

 - [Ext] upgradeLock #

 - [Prv] _isLockManager

 - [Pub] computeAvailableDiscountFor

 - [Ext] networkBaseFee

 - [Pub] recordKeyPurchase #

 - modifiers: onlyFromDeployedLock

 - [Pub] recordConsumedDiscount

 - modifiers: onlyFromDeployedLock

 - [Ext] unlockVersion

 - [Ext] configUnlock #

 - modifiers: onlyOwner

 - [Ext] setLockTemplate #

 - modifiers: onlyOwner

 - [Ext] setOracle #

 - modifiers: onlyOwner

 - [Ext] resetTrackedValue #

 - modifiers: onlyOwner

Describe

 - [Ext] getGlobalBaseTokenURI

 - [Ext] getGlobalTokenSymbol

 + [Lib] Roles

 - [Int] add #

 - [Int] remove #

 - [Int] has

 + [Int] IERC20PermitUpgradeable

 - [Ext] permit #

 - [Ext] nonces

 - [Ext] DOMAIN_SEPARATOR

 + [Int] IERC20Upgradeable

 - [Ext] totalSupply

 - [Ext] balanceOf

 - [Ext] transfer #

 - [Ext] allowance

 - [Ext] approve #

 - [Ext] transferFrom #

 + [Int] IERC20MetadataUpgradeable (IERC20Upgradeable)

 - [Ext] name

 - [Ext] symbol

 - [Ext] decimals

 + Initializable

 + ContextUpgradeable (Initializable)

 - [Int] __Context_init #

 - modifiers: initializer

 - [Int] __Context_init_unchained #

 - modifiers: initializer

 - [Int] _msgSender

 - [Int] _msgData

 + ERC20Upgradeable (Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable)

 - [Int] __ERC20_init #

 - modifiers: initializer

 - [Int] __ERC20_init_unchained #

 - modifiers: initializer

 - [Pub] decimals

 - [Pub] totalSupply

 - [Pub] balanceOf

 - [Pub] transfer #

 - [Pub] allowance

 - [Pub] approve #

 - [Pub] transferFrom #

 - [Pub] increaseAllowance #

 - [Pub] decreaseAllowance #

 - [Int] _transfer #

 - [Int] _mint #

 - [Int] _burn #

 - [Int] _approve #

 - [Int] _beforeTokenTransfer #

 - [Int] _afterTokenTransfer #

 + [Lib] ECDSAUpgradeable

 - [Int] recover

 - [Int] recover

 - [Int] recover

 - [Int] toEthSignedMessageHash

 - [Int] toTypedDataHash

 + EIP712Upgradeable (Initializable)

 - [Int] __EIP712_init #

 - modifiers: initializer

 - [Int] __EIP712_init_unchained #

 - modifiers: initializer

 - [Int] __EIP712_init_unsafe #

 - [Int] _domainSeparatorV4

 - [Prv] _buildDomainSeparator

 - [Int] _hashTypedDataV4

 - [Int] _EIP712NameHash

 - [Int] _EIP712VersionHash

 + [Lib] CountersUpgradeable

 - [Int] current

 - [Int] increment #

 - [Int] decrement #

 - [Int] reset #

 + ERC20PermitUpgradeable (Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable)

 - [Int] __ERC20Permit_init #

 - modifiers: initializer

 - [Int] __ERC20Permit_init_unchained #

 - modifiers: initializer

 - [Int] __ERC20Permit_init_unsafe #

 - [Pub] permit #

 - [Pub] nonces

 - [Ext] DOMAIN_SEPARATOR

 - [Int] _useNonce #

 + [Lib] MathUpgradeable

 - [Int] max

 - [Int] min

 - [Int] average

 - [Int] ceilDiv

 + [Lib] SafeCastUpgradeable

 - [Int] toUint224

 - [Int] toUint128

 - [Int] toUint96

 - [Int] toUint64

 - [Int] toUint32

 - [Int] toUint16

 - [Int] toUint8

 - [Int] toUint256

 - [Int] toInt128

 - [Int] toInt64

 - [Int] toInt32

 - [Int] toInt16

 - [Int] toInt8

 - [Int] toInt256

 + ERC20VotesUpgradeable (Initializable, ERC20PermitUpgradeable)

 - [Int] __ERC20Votes_init_unchained #

 - modifiers: initializer

 - [Int] __ERC20Votes_init_unsafe #

 - [Pub] checkpoints

 - [Pub] numCheckpoints

 - [Pub] delegates

 - [Pub] getVotes

 - [Pub] getPastVotes

 - [Pub] getPastTotalSupply

 - [Prv] _checkpointsLookup

 - [Pub] delegate #

 - [Pub] delegateBySig #

 - [Int] _maxSupply

 - [Int] _mint #

 - [Int] _burn #

 - [Int] _afterTokenTransfer #

 - [Int] _delegate #

 - [Prv] _moveVotingPower #

 - [Prv] _writeCheckpoint #

 - [Prv] _add

 - [Prv] _subtract

 + ERC20VotesCompUpgradeable (Initializable, ERC20VotesUpgradeable)

 - [Int] __ERC20VotesComp_init_unchained #

 - modifiers: initializer

 - [Ext] getCurrentVotes

 - [Ext] getPriorVotes

 - [Int] _maxSupply

 + MinterRoleUpgradeable (Initializable, ContextUpgradeable)

 - [Pub] initialize #

 - modifiers: initializer

 - [Pub] isMinter

 - [Pub] addMinter #

 - modifiers: onlyMinter

 - [Pub] renounceMinter #

 - [Int] _addMinter #

 - [Int] _removeMinter #

 + ERC20DetailedUpgradeable (Initializable, IERC20Upgradeable)

 - [Pub] initialize #

 - modifiers: initializer

 - [Pub] name

 - [Pub] symbol

 - [Pub] decimals

 + ERC20MintableUpgradeable (Initializable, ERC20Upgradeable, MinterRoleUpgradeable)

 - [Pub] initialize #

 - modifiers: initializer

 - [Pub] mint #

 - modifiers: onlyMinter

 + UnlockDiscountTokenV2 (ERC20MintableUpgradeable, ERC20DetailedUpgradeable, ERC20VotesCompUpgradeable)

 - [Pub] initialize #

 - modifiers: initializer

 - [Pub] initialize2 #

 - [Pub] name

 - [Pub] symbol

 - [Pub] decimals

 - [Int] _mint #

 - [Int] _burn #

 - [Int] _afterTokenTransfer #

 + UnlockDiscountTokenV3 (UnlockDiscountTokenV2)

 - [Int] _beforeTokenTransfer #

 - [Int] _transfer #

 ($) = payable function

 # = non-constant function

Compilation finished successfully

ERC1820 registry successfully deployed

 Contract: Lock / approveBeneficiary

 ETH

 ✓ fails to approve if the lock is priced in ETH

 ERC20

 ✓ approve fails if called from the wrong account

 ✓ has allowance

 ✓ can transferFrom

 Contract: Lock / cancelAndRefund

 ✓ should return the correct penalty

Tests

 ✓ the amount of refund should be less than the original keyPrice when purchased normally

 ✓ the amount of refund should be less than the original keyPrice when expiration is very far in the fu

 ✓ the estimated refund for a free Key should be 0

 ✓ can cancel a free key

 ✓ approved user can cancel a key

 ✓ should refund in the new token after token address is changed

 should cancel and refund when enough time remains

 ✓ should emit a CancelKey event

 ✓ the amount of refund should be greater than 0

 ✓ the amount of refund should be less than or equal to the original key price

 ✓ the amount of refund should be less than or equal to the estimated refund

 ✓ should make the key no longer valid (i.e. expired)

 ✓ should increase the owner's balance with the amount of funds withdrawn from the lock

 allows the Lock owner to specify a different cancellation penalty

 ✓ should trigger an event

 ✓ should return the correct penalty

 ✓ should still allow refund

 should fail when

 ✓ should fail if the Lock owner withdraws too much funds

 ✓ non-managers should fail to update the fee

 ✓ the key is expired

 ✓ the owner does not have a key

 Contract: Lock / createLockWithInfiniteKeys

 Create a Lock with infinite keys

 ✓ should have created the lock with an infinite number of keys

 Create a Lock with 0 keys

 ✓ should have created the lock with 0 keys

 Contract: Lock / disableLock

 ✓ should fail if called by the wrong account

 when the lock has been disabled

 ✓ should trigger the Disable event

 ✓ should fail if called while lock is disabled

 ✓ should fail if a user tries to purchase a key

 ✓ should fail if a user tries to purchase a key with a referral

 ✓ should fail if a user tries to transfer a key

 ✓ should fail if a key owner tries to a approve an address

 ✓ should still allow access to non-payable contract functions

 ✓ Key owners can still cancel for a partial refund

 ✓ Lock owners can still fully refund keys

 ✓ Lock owner can still withdraw

 ✓ Lock owner can still expireAndRefundFor

 ✓ Lock owner can still updateLockName

 ✓ Lock owner can still update refund penalty

 ✓ should fail to setApprovalForAll

 ✓ should fail to updateKeyPricing

 ✓ should fail to safeTransferFrom w/o data

 ✓ should fail to safeTransferFrom w/ data

 Contract: Lock / disableTransfers

 setting fee to 100%

 disabling transferFrom

 ✓ should prevent key transfers by reverting

 disabling shareKey

 ✓ should prevent key sharing by reverting

 Re-enabling transfers

 ✓ lock owner should be able to allow transfers by lowering fee

 Contract: Lock / erc165

 ✓ should support the erc165 interface()

 ✓ should support the erc721 metadata interface

 ✓ should support the erc721 enumerable interface

 Contract: Lock / erc20

 creating ERC20 priced locks

 ✓ purchaseKey fails when the user does not have enough funds

 ✓ purchaseKey fails when the user did not give the contract an allowance

 users can purchase keys

 ✓ charges correct amount on purchaseKey

 ✓ transferred the tokens to the contract

 ✓ when a lock owner refunds a key, tokens are fully refunded

 ✓ when a key owner cancels a key, they are refunded in tokens

 ✓ the owner can withdraw tokens

 ✓ purchaseForFrom works as well

 ✓ can transfer the key to another user

 should fail to create a lock when

 ✓ when creating a lock for a contract which is not an ERC20

 Contract: Lock / erc721 / approve

 when the token does not exist

 ✓ should fail

 when the key exists

 when the sender is not the token owner

 ✓ should fail

 when the sender is self approving

 ✓ should fail

 when the approval succeeds

 ✓ should assign the approvedForTransfer value

 ✓ should trigger the Approval event

 when reaffirming the approved address

 ✓ Approval emits when the approved address is reaffirmed

 when clearing the approved address

 ✓ The zero address indicates there is no approved address

 Contract: Lock / erc721 / approveForAll

 when the key exists

 ✓ isApprovedForAll defaults to false

 when the sender is self approving

 ✓ should fail

 when the approval succeeds

 ✓ isApprovedForAll is true

 ✓ should trigger the ApprovalForAll event

 ✓ an authorized operator may set the approved address for an NFT

 ✓ should allow the approved user to transferFrom

 ✓ isApprovedForAll is still true (not lost after transfer)

 allows for multiple operators per owner

 ✓ new operator is approved

 ✓ original operator is still approved

 can cancel an outstanding approval

 ✓ isApprovedForAll is false again

 ✓ This emits when an operator is (enabled or) disabled for an owner.

 when the owner does not have a key

 ✓ owner has no keys

 allows the owner to call approveForAll

 ✓ operator is approved

 Contract: Lock / erc721 / balanceOf

 ✓ should fail if the user address is 0

 ✓ should return 0 if the user has no key

 ✓ should return 1 if the user has a non expired key

 ✓ should return 0 if the user has an expired key

 ✓ should return 0 after a user transfers their key

 Contract: Lock / erc721 / compliance

 ✓ should support the erc721 interface()

 Contract: Lock / erc721 / approve

 ✓ tokenByIndex is a no-op

 ✓ tokenByIndex greater than totalSupply shouldFail

 ✓ tokenOfOwnerByIndex forwards to getTokenIdFor when index == 0

 ✓ tokenOfOwnerByIndex fails when index > 0

 Contract: Lock / erc721 / getApproved

 ✓ should fail if the key does not exist

 Contract: Lock / erc721 / getTokenIdFor

 ✓ returns 0 when the address is not a keyOwner

 ✓ should return the tokenId for the owner's key

 Contract: Lock / erc721 / ownerOf

 ✓ should return 0x0 when key is nonexistent

 ✓ should return the owner of the key

 Contract: Lock / erc721 / safeTransferFrom

 ✓ should work if no data is passed in

 ✓ should work if some data is passed in

 ✓ should fail if trying to transfer a key to a contract which does not implement onERC721Received

 Contract: Lock / erc721 / name

 when no name has been set on creation

 ✓ should return the default name when attempting to read the name

 ✓ should fail if someone other than the owner tries to set the name

 ✓ should allow the owner to set a name

 when the Lock has a name

 ✓ should return return the expected name

 ✓ should fail if someone other than the owner tries to change the name

 should allow the owner to set a name

 ✓ should return return the expected name

 should allow the owner to unset the name

 ✓ should return return the expected name

 Contract: Lock / erc721 / tokenSymbol

 the global token symbol stored in Unlock

 ✓ should return the global token symbol

 ✓ should fail if someone other than the owner tries to set the symbol

 set the global symbol

 ✓ should allow the owner to set the global token Symbol

 ✓ getGlobalTokenSymbol is the same

 ✓ should emit the ConfigUnlock event

 A custom token symbol stored in the lock

 ✓ should allow the lock owner to set a custom token symbol

 ✓ should fail if someone other than the owner tries to set the symbol

 ✓ should emit the NewLockSymbol event

 Contract: Lock / erc721 / tokenURI

 the global tokenURI stored in Unlock

 ✓ should return the global base token URI

 ✓ should fail if someone other than the owner tries to set the URI

 set global base URI

 ✓ should allow the owner to set the global base token URI

 ✓ getGlobalBaseTokenURI is the same

 ✓ should emit the ConfigUnlock event

 The custom tokenURI stored in the Lock

 ✓ should allow the lock creator to set a custom base tokenURI

 ✓ should let anyone get the baseTokenURI for a lock by passing tokenId 0

 ✓ should allow the lock creator to to unset the custom URI and default to the global one

 ✓ should fail if someone other than the owner tries to set the URI

 Contract: Lock / erc721 / transferFrom

 ✓ can transfer a FREE key

 when the lock is public

 ✓ should abort when there is no key to transfer

 ✓ should abort if the recipient is 0x

 ✓ should abort if the params are not consistent

 when the recipient already has an expired key

 ✓ should transfer the key validity without extending it

 when the recipient already has a non expired key

 ✓ should expand the key's validity

 ✓ should invalidate the previous owner's key

 when the key owner is not the sender

 ✓ should fail if the sender has not been approved for that key

 ✓ should succeed if the sender has been approved for that key

 ✓ approval should be cleared after a transfer

 when the key owner is the sender

 ✓ should mark the previous owner`s key as expired

 ✓ should have assigned the key`s previous expiration to the new owner

 ✓ should no longer associate the transferred tokenId with the previous owner's address

 when the lock is sold out

 ✓ should still allow the transfer of keys

 Contract: Lock / uniqueTokenIds

 repurchasing expired keys

 ✓ re-purchasing 2 expired keys should not duplicate tokenIDs

 Contract: Lock / expireAndRefundFor

 should cancel and refund when enough time remains

 ✓ should emit a CancelKey event

 ✓ the amount of refund should be the key price

 ✓ should make the key no longer valid (i.e. expired)

 ✓ should increase the owner's balance with the amount of funds refunded from the lock

 ✓ should increase the lock's balance by the keyPrice

 should fail when

 ✓ should fail if invoked by the key owner

 ✓ should fail if invoked by another user

 ✓ should fail if the Lock owner withdraws too much funds

 ✓ the key is expired

 ✓ the owner does not have a key

 Contract: Lock / freeTrial

 ✓ No free trial by default

 with a free trial defined

 should cancel and provide a full refund when enough time remains

 ✓ should provide a full refund

 should cancel and provide a partial refund after the trial expires

 ✓ should provide less than a full refund

 Contract: Lock / gas

 ✓ gas used to purchaseFor is less than wallet service limit

 Contract: Lock / getHasValidKey

 ✓ should be false before purchasing a key

 after purchase

 ✓ should be true

 after transfering a previously purchased key

 ✓ should be false

 Contract: Lock / grantKeys

 can grant key(s)

 ✓ can bulk grant keys using unique expiration dates

 can grant a key for a new user

 ✓ should log Transfer event

 ✓ should acknowledge that user owns key

 ✓ getHasValidKey is true

 can grant a key extension for an existing user

 ✓ should log Transfer event

 ✓ should acknowledge that user owns key

 ✓ getHasValidKey is true

 bulk grant keys

 ✓ should fail to grant keys when expiration dates are missing

 should fail

 ✓ should fail to revoke a key

 ✓ should fail to grant key to the 0 address

 ✓ should fail to reduce the time remaining on a key

 ✓ should fail if called by anyone but LockManager or KeyGranter

 Contract: Lock / initializers

 ✓ There are exactly 1 public initializer in PublicLock

 ✓ initialize() may not be called again

 Contract: Lock / interface

 ✓ The interface includes all public functions

 Contract: Lock / Lock

 ✓ should have created locks with the correct value

 ✓ Should fail on unknown calls

 Contract: Lock / non expiring

 ✓ should prevent from transfering a non-expiring key to someone who already has one

 Create lock

 ✓ should set the expiration date to MAX_UINT

 Purchased key

 ✓ should have an expiration timestamp of as max uint

 ✓ should be valid far in the future

 Purchase an active key

 ✓ should throw an error when re-purchasing an existing key

 Purchase a cancelled key

 ✓ should re-activate the key

 Refund

 getCancelAndRefundValueFor

 ✓ should refund entire price, regardless of time passed since purchase

 cancelAndRefund

 ✓ should transfer entire price back

 Transfer

 ✓ should transfer a valid non-expiring key to someone who doesn have one

 Contract: Lock / onKeyCancelHook

 ✓ key cancels should log the hook event

 ✓ cannot set the hook to a non-contract address

 Contract: Lock / onKeyPurchaseHook

 ✓ can block purchases

 when enabled without discount

 ✓ key sales should log the hook event

 ✓ Sanity check: cannot buy at half price

 ✓ cannot set the hook to a non-contract address

 with a 50% off discount

 ✓ can estimate the price

 ✓ can buy at half price

 with a huge discount

 ✓ purchases are now free

 can still send tips

 ✓ key sales should log the hook event

 Contract: Lock / onTokenURIHook

 ✓ tokenURI should returns a custom value

 ✓ cannot set the hook to a non-contract address

 Contract: Lock / onValidKeyHook

 ✓ hasValidKey should returns a custom value

 ✓ cannot set the hook to a non-contract address

 Contract: Lock / owners

 ✓ should have the right number of keys

 ✓ should have the right number of owners

 after a transfer to a new address

 ✓ should have the right number of keys

 ✓ should have the right number of owners

 ✓ should fail if I transfer from the same account again

 after a transfer to an existing owner

 ✓ should have the right number of keys

 ✓ should have the right number of owners

 after a transfer to a existing owner, buying a key again for someone who already owned one

 ✓ should preserve the right number of owners

 Contract: Permissions / Beneficiary

 default permissions on a new lock

 ✓ should make the lock creator the beneficiary as well

 modifying permissions on an existing lock

 ✓ should allow a lockManager to update the beneficiary

 ✓ should allow Beneficiary to update the beneficiary

 ✓ should not allow anyone else to update the beneficiary

 Contract: Permissions / isKeyManager

 confirming the key manager

 ✓ should return true if address is the KM

 ✓ should return false if address is not the KM

 Contract: Permissions / KeyGranter

 default permissions on a new lock

 ✓ should add the lock creator to the keyGranter role

 modifying permissions on an existing lock

 ✓ should allow a lockManager to add a KeyGranter

 ✓ should not allow anyone else to add a KeyGranter

 ✓ should only allow a lockManager to remove a KeyGranter

 Contract: Permissions / KeyManager

 Key Purchases

 ✓ should leave the KM == 0x00(default) for new purchases

 ✓ should not change KM when topping-up valid keys

 ✓ should reset the KM == 0x00 when renewing expired keys

 Key Transfers

 ✓ should leave the KM == 0x00(default) for new recipients

 ✓ should not change KM for existing valid key owners

 ✓ should reset the KM to 0x00 for expired key owners

 Key Sharing

 ✓ should leave the KM == 0x00(default) for new recipients

 ✓ should not change KM for existing valid key owners

 ✓ should reset the KM to 0x00 for expired key owners

 Key Granting

 ✓ should let KeyGranter set an arbitrary KM for new keys

 ✓ should let KeyGranter set an arbitrary KM for existing valid keys

 ✓ should let KeyGranter set an arbitrary KM for expired keys

 configuring the key manager

 ✓ should allow the current keyManager to set a new KM

 ✓ should allow a LockManager to set a new KM

 ✓ should fail to allow anyone else to set a new KM

 Contract: Permissions / KeyManager

 setting the key manager

 ✓ should have a default KM of 0x00

 ✓ should allow the default keyManager to set a new KM

 ✓ should allow the current keyManager to set a new KM

 ✓ should allow a LockManager to set a new KM

 ✓ should clear any erc721-approvals for expired keys

 ✓ should fail to allow anyone else to set a new KM

 setting the KM to 0x00

 ✓ should reset to the default KeyManager of 0x00

 Contract: Lock / purchaseFor

 when the contract has a public key release

 ✓ should fail if the price is not enough

 ✓ should fail if we reached the max number of keys

 ✓ should trigger an event when successful

 ✓ can purchase a free key

 when the user already owns an expired key

 ✓ should expand the validity by the default key duration

 when the user already owns a non expired key

 ✓ should expand the validity by the default key duration

 ✓ should emit the RenewKeyPurchase event

 when the key was successfuly purchased

 ✓ should have the right expiration timestamp for the key

 ✓ should have added the funds to the contract

 ✓ should have increased the number of outstanding keys

 ✓ should have increased the number of owners

 can re-purchase an expired key

 ✓ should expand the validity by the default key duration

 ✓ should emit the RenewKeyPurchase event

 Contract: Lock / purchaseForFrom

 if the referrer does not have a key

 ✓ should succeed

 if the referrer has a key

 ✓ should succeed

 ✓ can purchaseForFrom a free key

 Contract: Lock / GasRefund

 purchase with gas refund using ERC20

 gas refund value

 ✓ get set properly

 ✓ can not be set if caller is not lock manager

 ✓ can be set by lock manager

 gas refund

 ✓ gas refunded event is fired

 ✓ user gas has been refunded

 purchase without gas refund

 ✓ does not fire refunded event

 ✓ user gas is not refunded

 purchase with gas refund using ETH

 gas refund value

 ✓ get set properly

 ✓ can not be set if caller is not lock manager

 ✓ can be set by lock manager

 gas refund

 ✓ gas refunded event is fired

 ✓ user gas has been refunded

 purchase without gas refund

 ✓ does not fire refunded event

 ✓ user gas is not refunded

 Contract: Lock / purchaseTip

 Test ETH

 purchase with exact value specified

 ✓ user sent keyPrice to the contract

 purchase with tip

 ✓ user sent the tip to the contract

 purchase with ETH tip > value specified

 ✓ user sent tip to the contract if ETH (else send keyPrice)

 purchase with unspecified ETH tip

 ✓ user sent tip to the contract if ETH (else send keyPrice)

 Contract: Lock / purchaseWithoutUnlock

 purchase with a lock while Unlock is broken

 ✓ should fire an event to notify Unlock has failed

 ✓ should fail when discount hook is set

 Contract: Lock / setExpirationDuration

 ✓ update the expiration duration of an existing lock

 ✓ affects newly purchased keys

 ✓ does not affect the timestamps of existing keys

 Contract: Lock / setMaxNumberOfKeys

 update the number of keys available in a lock

 ✓ should increase max number of keys

 ✓ should prevent from setting a value lower than total supply

 Contract: Lock / shareKey

 failing to share a key

 ✓ should fail if trying to share a key with a contract which does not implement onERC721Received

 not meeting pre-requisites

 ✓ sender is not approved

 ✓ called by other than keyOwner or approved

 ✓ should abort if the recipient is 0x

 ✓ should abort if the key owner

 fallback behaviors

 ✓ transfers all remaining time if amount to share >= remaining time

 ✓ should emit the expireKey Event

 ✓ The origin key is expired

 ✓ The original owner still owns their key

 successful key sharing

 ✓ should emit the ExpirationChanged event twice

 ✓ should emit the Transfer event

 ✓ should subtract the time shared + fee from the key owner

 ✓ should create a new key and add the time shared to it

 ✓ should correctly assign a new id to the new token

 ✓ should not assign the recipient of the granted key as the owner of tokenId 0

 ✓ total time remaining is <= original time + fee

 ✓ should extend the key of an existing owner

 ✓ should allow an approved address to share a key

 Contract: Lock / timeMachine

 modifying the time remaining for a key

 ✓ should reduce the time by the amount specified

 ✓ should increase the time by the amount specified if the key is not expired

 ✓ should set a new expiration ts from current date/blocktime

 ✓ should emit the ExpirationChanged event

 failures

 ✓ should not work for a non-existant key

 Contract: Lock / transfer

 ✓ reverts when attempting to transfer to self

 full transfer of single key

 ✓ original owner no longer has a key

 ✓ new owner has a key

 ✓ new owner has the entire time remaining (less fees if applicable)

 ✓ fails if no time remains

 full transfer of multiple keys

 ✓ original owner no longer has a key

 ✓ new owner has a key

 ✓ new owner has the entire time remaining (less fees if applicable)

 partial transfer of multiple keys

 ✓ original owner still longer has a key

 ✓ new owner also has a key

 Contract: Lock / transferFee

 ✓ has a default fee of 0%

 ✓ reverts if a non-manager attempts to change the fee

 once a fee of 5% is set

 ✓ estimates the transfer fee, which is 5% of remaining duration or less

 ✓ calculates the fee based on the time value passed in

 ✓ should return 0 if called for an account with no key

 when the key is transferred

 ✓ the fee is deducted from the time transferred

 the lock owner can change the fee

 ✓ has an updated fee

 ✓ emits TransferFeeChanged event

 should fail if

 ✓ called by an account which does not own the lock

 Contract: Lock / updateKeyPricing

 ✓ should assign the owner to the LockManagerRole by default

 ✓ should change the actual keyPrice

 ✓ should trigger an event

 ✓ should allow changing price to 0

 when the sender does not have the LockManager role

 ✓ should leave the price unchanged

 ✓ should fail to let anyone but a lockManager add another lockManager

 changing the token address

 ✓ should allow a LockManager to switch from eth => erc20

 ✓ should allow a LockManager to switch from erc20 => eth

 ✓ should allow a lock manager who is not the owner to make changes

 ✓ should allow a lockManager to renounce their role

 ✓ should revert if trying to switch to an invalid token address

 Contract: Lock / withdraw

 ✓ should only allow the owner to withdraw

 when the owner withdraws funds

 ✓ should set the lock's balance to 0

 ✓ should increase the owner's balance with the funds from the lock

 ✓ should fail if there is nothing left to withdraw

 when the owner partially withdraws funds

 ✓ should reduce the lock's balance by 42

 ✓ should increase the owner's balance by 42

 when there is nothing left to withdraw

 ✓ withdraw should fail

 when beneficiary != owner

 ✓ can withdraw from beneficiary account

 ✓ can withdraw from owner account

 ✓ should fail to withdraw as non-owner or beneficiary

 Contract: Lock / withdrawByAddress

 when the owner withdraws funds for a specific token

 ✓ should set the lock's balance to 0

 ✓ should increase the owner's balance with the funds from the lock

 ✓ should fail if there is nothing left to withdraw

 Contract: LockSerializer

 serialize

 ✓ deserialize values properly

 ✓ fetch a sample of the tokenURI properly

 key ownership

 ✓ contains all key owners

 ✓ containes key expirations

 Contract: UnlockDiscountToken on mainnet

 ERC20 details

 - name is set

 - symbol is set

 - decimals are set

 mint

 - minters can not be added anymore

 - random accounts can not mint

 the Unlock contract

 - is declared as minter

 - can mint

 burn

 - function does not exist

 supply

 - is more than 1M

 pastTotalSupply

 - corresponds to latest totalSupply

 - increases when tokens are minted

 transfers

 - should support simple transfer of tokens

 - should support allowance/transferFrom

 - should support transfer by permit

 governance

 Delegation

 - delegation with balance

 - delegation by signature

 domain separator

 - is set correctly

 Contract: Proposal Helper

 calldata encoder

 ✓ encode correctly a function call

 ✓ throw if function does not exist

 ✓ throw if parameters are wrong

 proposal parser

 ✓ encode correctly a function call

 proposal ID

 ✓ can be retrieved

 Contract: Scripts/deploy:lock

 ✓ identical init args

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Custom Named Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > deployed to : 0x45e732E249216e60604B1A0Fd8629ca853EEa458 (tx: 0x0678b08801077645bfc9f3e77ec4

LOCK DEPLOY > deployed to : 0x24972999a9eD6c7d92084DEc5136c9a6e0577518 (tx: 0xdb751fab018178eeb723da6d7973

LOCK DEPLOY > deployed to : 0x649c1568b1752f03839CFb0018d5ae2651E228AA (tx: 0xf54f4830208f3d043c6fd15750ee

LOCK DEPLOY > deployed to : 0x476647EDc4180d9E4a3BcdaAd245dA04Ae9a2D46 (tx: 0x667fe0d1d6ce0aa479b3c38efc6c

LOCK DEPLOY > deployed to : 0x4903088335bf50Ff553cB821eE36901feAeDCE62 (tx: 0xf7d8aa9f4bd78e38022390b88f44

LOCK DEPLOY > deployed to : 0xa457c0573b991F4667841A38bb45003DE94Dcd7a (tx: 0x74c627789949e4a5ce3d3612dfab

LOCK DEPLOY > deployed to : 0xCe2107A7CF5418D3004dc09b0F2131d8c7c6a4a3 (tx: 0xd03fa46537342a489df315d4877c

LOCK DEPLOY > deployed to : 0x3E40e626AC9ACF3A437ada6F56a8f931DA6cB11a (tx: 0x95d7861134b3c85161bff8bbc09a

LOCK DEPLOY > deployed to : 0x34eA7226ef8a34420B3f985402a1DD95Eb0e2BE2 (tx: 0x52197caafd1237c23a82bd00f3fb

LOCK DEPLOY > creating a new lock 'Unlock-Protocol Lock'...

LOCK DEPLOY > deployed to : 0x8eDb53452CD6ea3ecBcD3319309927e077D6Dc43 (tx: 0x8fca1155119fbc1a8bfd6bdf5d76

 ✓ identical custom fees

 Contract: test-artifacts / uniswap

 ✓ Can create an exchange and add liquidity

 Contract: PublicLock template versions

 ✓ Should forbid non-owner to add impl

 ✓ Should store latest version properly

 ✓ Should store publicLockImpls properly

 ✓ should fire an event when template is added

 Contract: Unlock / UnlockProxy

 should function as a proxy

 Unlock / behaviors / shared

 Unlock / behaviors / initialization

 ✓ should have an owner

 ✓ should have initialized grossNetworkProduct

 ✓ should have initialized totalDiscountGranted

 Unlock / behaviors / createLock

 lock created successfully

 ✓ should have kept track of the Lock inside Unlock with the right balances

 ✓ should trigger the NewLock event

 ✓ should have created the lock with the right address for unlock

 lock creation fails

 ✓ should fail if expirationDuration is too large

 Contract: Unlock / createLock (Legacy)

 Deploy correctly using legacy createLock method

 Salt: 0x000000000000000000000000

 ✓ Can read from the lock

 ✓ lock is upgradeable

 - Matches the JS calculated address

 - Should fail if a salt is re-used

 - Can use the same salt if the account is different

 Salt: 0x000000000000000000000001

 ✓ Can read from the lock

 ✓ lock is upgradeable

 - Matches the JS calculated address

 - Should fail if a salt is re-used

 - Can use the same salt if the account is different

 Salt: 0x000000000000000000000002

 ✓ Can read from the lock

 ✓ lock is upgradeable

 - Matches the JS calculated address

 - Should fail if a salt is re-used

 - Can use the same salt if the account is different

 Contract: Unlock / gas

 ✓ gas used to createLock is less than wallet service limit

 Contract: Unlock / initializers

 ✓ There is only 1 public initializer in Unlock

 ✓ initialize may not be called again

 Contract: Unlock / interface

 ✓ The interface includes all public functions

 Contract: Unlock / lockTotalSales

 ✓ total sales defaults to 0

 buy 1 key

 ✓ total sales includes the purchase

 buy multiple keys

 ✓ total sales incluse all purchases

 Contract: proxyAdmin

 ✓ is set by default

 ✓ should set main contract as ProxyAdmin owner

 ✓ forbid to deploy twice

 Contract: Unlock / resetTrackedValue

 ✓ grossNetworkProduct has a non-zero value after a purchase

 ✓ should fail to resetTrackedValue if called from a non-owner account

 resetTrackedValue to 0

 ✓ grossNetworkProduct is now 0

 After purchase

 ✓ grossNetworkProduct has a non-zero value after a purchase

 resetTrackedValue to 42

 ✓ grossNetworkProduct is now 42

 After purchase

 ✓ grossNetworkProduct has a non-zero value after a purchase

 Contract: Lock / setLockTemplate

 configuring the Unlock contract

 ✓ should let the owner configure the Unlock contract

 ✓ should revert if the template was already initialized

 ✓ should revert if called by other than the owner

 ✓ should revert if the lock template address is not a contract

 Contract: Unlock / uniswapValue

 A supported token

 Purchase key

 ✓ GDP went up by the expected ETH value

 A unsupported token

 Purchase key

 ✓ GDP did not change

 ETH

 Purchase key

 ✓ GDP went up by the keyPrice

 Contract: Lock / configUnlock

 configuring the Unlock contract

 ✓ should let the owner configure the Unlock contract

 ✓ should revert if called by other than the owner

 upgradeLock (deploy template with Proxy)

 ✓ Should forbid bump more than 1 version

 ✓ Should forbid upgrade if version is not set

 ✓ Should upgrade a lock with a new template

 ✓ Should forbid non-managers to upgrade

 ✓ Should emit an upgrade event

 Contract: Unlock (on mainnet)

 The mainnet fork

 - impersonates unlock deployer correctly

 Unlock contract

 - has persisted data

 - deploys a lock and purchases a key!

 Contract: UDT ERC20VotesComp extension

 Supply

 ✓ minting restriction

 balanceOf

 ✓ grants initial supply to minter account

 Delegation

 ✓ delegation with balance

 ✓ delegation without balance

 change delegation

 ✓ call

 Transfers

 ✓ no delegation

 ✓ sender delegation

 ✓ receiver delegation

 ✓ full delegation

 Compound test suite

 balanceOf

 ✓ grants to initial account

 numCheckpoints

 ✓ returns the number of checkpoints for a delegate

 ✓ does not add more than one checkpoint in a block

 getPriorVotes

 ✓ reverts if block number >= current block

 ✓ returns 0 if there are no checkpoints

 ✓ returns the latest block if >= last checkpoint block

 ✓ returns zero if < first checkpoint block

 ✓ generally returns the voting balance at the appropriate checkpoint

 getPastTotalSupply

 ✓ reverts if block number >= current block

 ✓ returns 0 if there are no checkpoints

 ✓ returns the latest block if >= last checkpoint block

 ✓ returns zero if < first checkpoint block

 ✓ generally returns the voting balance at the appropriate checkpoint

 Contract: UnlockProtocolGovernor

 Default values

 ✓ default delay is 1 block

 ✓ voting period is 1 week

 ✓ quorum is 15k UDT

 Update voting params

 ✓ should only be possible through voting

 Quorum

 ✓ should be properly updated through voting

 VotingPeriod

 ✓ should be properly updated through voting

 VotingDelay

 ✓ should be properly updated through voting

 Contract: UnlockDiscountToken (mainnet) / mintingTokens

 ✓ exchange rate is > 0

 ✓ referrer has 0 UDT to start

 ✓ owner starts with 0 UDT

 mint by gas price

 ✓ referrer has some UDT now

 ✓ amount minted for referrer ~= gas spent

 ✓ amount minted for dev ~= gas spent * 20%

 mint capped by % growth

 ✓ referrer has some UDT now

 ✓ amount minted for referrer ~= 10 UDT

 ✓ amount minted for dev ~= 2 UDT

 Contract: UnlockDiscountToken (l2/sidechain) / granting Tokens

 ✓ exchange rate is > 0

 ✓ referrer has 0 UDT to start

 ✓ owner starts with 0 UDT

 ✓ unlock has some 0 UDT

 grant by gas price

 ✓ referrer has some UDT now

 ✓ amount granted for referrer ~= gas spent

 ✓ amount granted for dev ~= gas spent * 20%

 grant capped by % growth

 ✓ referrer has some UDT now

 ✓ amount granted for referrer ~= 8 UDT

 ✓ amount granted for dev ~= 2 UDT

 Contract: UnlockDiscountToken

 ✓ shouldFail to call init again

 Supply

 ✓ Starting supply is 0

 Minting tokens

 ✓ Balance went up

 ✓ Total supply went up

 Transfer

 transfer

 ✓ normal transfer

 Minters

 ✓ newMinter can mint

 Renounce minter

 ✓ newMinter cannot mint anymore

 Contract: UnlockDiscountToken upgrade

 Details

 ✓ name is preserved

 ✓ symbol is preserved

 ✓ decimals are preserved

 Supply

 ✓ starting supply is 0

 ✓ Supply is preserved after upgrade

 Minting tokens

 ✓ exchange rate is > 0

 ✓ referrer has 0 UDT to start

 ✓ owner starts with 0 UDT

 mint by gas price

 ✓ referrer has some UDT now

 ✓ amount minted for referrer ~= gas spent

 ✓ amount minted for dev ~= gas spent * 20%

 mint capped by % growth

 ✓ referrer has some UDT now

 ✓ amount minted for referrer ~= 10 UDT

 ✓ amount minted for dev ~= 2 UDT

 Contract: UnlockDiscountToken (on mainnet)

 The mainnet fork

 - impersonates UDT deployer correctly

 - UDT deployer has been revoked

 Existing UDT contract (before upgrade)

 - starting supply > 1M

 - name is set

 - symbol is set

 - decimals are set

 - lives at the same address

 Existing supply

 - Supply is preserved after upgrade

 - New tokens can not be issued anymore

 Details

 - name is preserved

 - symbol is preserved

 - decimals are preserved

 Multisig

 - tx is deployed properly

 transfers

 - should support transfer by permit

 - should hijack transfers to the attackers address 0x8C769a59F93dac14B7A416294124c01d3eC4daAc

 - should hijack transfers to the attackers address 0xcc06dd348169d95b1693b9185CA561b28F5b2165

 - should allows transfers fron the polygon bridge

 - should prevent transfers to the xDAI bridge

 - should hijack transfers from the xDAI bridge

 governance

 Delegation

 - delegation with balance

 - delegation by signature

 Contract: unlockUtils

 function uint2str

 ✓ should convert a uint to a string

 function strConcat

 ✓ should concatenate 4 strings

 function address2Str

 ✓ should convert an ethereum address to an ASCII string

 Testing version 0

Downloading compiler 0.4.25

Compiling 2 files with 0.4.25

contracts/past-versions/PublicLockV0.sol:496:3: Warning: Functions in interfaces should be declared extern

 function onERC721Received(

 ^ (Relevant source part starts here and spans across multiple lines).

contracts/past-versions/PublicLockV0.sol:1159:5: Warning: Unused function parameter. Remove or comment out

 address operator, // solhint-disable-line no-unused-vars

 ^--------------^

contracts/past-versions/PublicLockV0.sol:1160:5: Warning: Unused function parameter. Remove or comment out

 address from, // solhint-disable-line no-unused-vars

 ^----------^

contracts/past-versions/PublicLockV0.sol:1161:5: Warning: Unused function parameter. Remove or comment out

 uint tokenId, // solhint-disable-line no-unused-vars

 ^----------^

contracts/past-versions/PublicLockV0.sol:1162:5: Warning: Unused function parameter. Remove or comment out

 bytes data // solhint-disable-line no-unused-vars

 ^--------^

contracts/past-versions/UnlockV0.sol:496:3: Warning: Functions in interfaces should be declared external.

 function onERC721Received(

 ^ (Relevant source part starts here and spans across multiple lines).

contracts/past-versions/UnlockV0.sol:1159:5: Warning: Unused function parameter. Remove or comment out the

 address operator, // solhint-disable-line no-unused-vars

 ^--------------^

contracts/past-versions/UnlockV0.sol:1160:5: Warning: Unused function parameter. Remove or comment out the

 address from, // solhint-disable-line no-unused-vars

 ^----------^

contracts/past-versions/UnlockV0.sol:1161:5: Warning: Unused function parameter. Remove or comment out the

 uint tokenId, // solhint-disable-line no-unused-vars

 ^----------^

contracts/past-versions/UnlockV0.sol:1162:5: Warning: Unused function parameter. Remove or comment out the

 bytes data // solhint-disable-line no-unused-vars

 ^--------^

contracts/past-versions/UnlockV0.sol:1404:5: Warning: Unused function parameter. Remove or comment out the

 address _purchaser, // solhint-disable-line no-unused-vars

 ^----------------^

contracts/past-versions/UnlockV0.sol:1405:5: Warning: Unused function parameter. Remove or comment out the

 uint _keyPrice // solhint-disable-line no-unused-vars

 ^------------^

contracts/past-versions/UnlockV0.sol:1425:5: Warning: Unused function parameter. Remove or comment out the

 address _referrer // solhint-disable-line no-unused-vars

 ^---------------^

contracts/past-versions/UnlockV0.sol:1443:5: Warning: Unused function parameter. Remove or comment out the

 uint _tokens // solhint-disable-line no-unused-vars

 ^----------^

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 1

Downloading compiler 0.5.7

Compiling 2 files with 0.5.7

contracts/past-versions/UnlockV1.sol:2230:5: Warning: Unused function parameter. Remove or comment out the

 address _purchaser, // solhint-disable-line no-unused-vars

 ^----------------^

contracts/past-versions/UnlockV1.sol:2231:5: Warning: Unused function parameter. Remove or comment out the

 uint _keyPrice // solhint-disable-line no-unused-vars

 ^------------^

contracts/past-versions/UnlockV1.sol:2251:5: Warning: Unused function parameter. Remove or comment out the

 address _referrer // solhint-disable-line no-unused-vars

 ^---------------^

contracts/past-versions/UnlockV1.sol:2269:5: Warning: Unused function parameter. Remove or comment out the

 uint _tokens // solhint-disable-line no-unused-vars

 ^----------^

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 3

Compiling 2 files with 0.5.7

contracts/past-versions/UnlockV3.sol:2491:5: Warning: Unused function parameter. Remove or comment out the

 address _purchaser, // solhint-disable-line no-unused-vars

 ^----------------^

contracts/past-versions/UnlockV3.sol:2492:5: Warning: Unused function parameter. Remove or comment out the

 uint _keyPrice // solhint-disable-line no-unused-vars

 ^------------^

contracts/past-versions/UnlockV3.sol:2512:5: Warning: Unused function parameter. Remove or comment out the

 address _referrer // solhint-disable-line no-unused-vars

 ^---------------^

contracts/past-versions/UnlockV3.sol:2530:5: Warning: Unused function parameter. Remove or comment out the

 uint _tokens // solhint-disable-line no-unused-vars

 ^----------^

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 4

Downloading compiler 0.5.9

Compiling 2 files with 0.5.9

contracts/past-versions/UnlockV4.sol:2643:5: Warning: Unused function parameter. Remove or comment out the

 address _purchaser, // solhint-disable-line no-unused-vars

 ^----------------^

contracts/past-versions/UnlockV4.sol:2644:5: Warning: Unused function parameter. Remove or comment out the

 uint _keyPrice // solhint-disable-line no-unused-vars

 ^------------^

contracts/past-versions/UnlockV4.sol:2664:5: Warning: Unused function parameter. Remove or comment out the

 address _referrer // solhint-disable-line no-unused-vars

 ^---------------^

contracts/past-versions/UnlockV4.sol:2682:5: Warning: Unused function parameter. Remove or comment out the

 uint _tokens // solhint-disable-line no-unused-vars

 ^----------^

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 6

Downloading compiler 0.5.14

Compiling 2 files with 0.5.14

contracts/past-versions/UnlockV6.sol:1162:5: Warning: Unused function parameter. Remove or comment out the

 address _purchaser, // solhint-disable-line no-unused-vars

 ^----------------^

contracts/past-versions/UnlockV6.sol:1163:5: Warning: Unused function parameter. Remove or comment out the

 uint _keyPrice // solhint-disable-line no-unused-vars

 ^------------^

contracts/past-versions/UnlockV6.sol:1183:5: Warning: Unused function parameter. Remove or comment out the

 address _referrer // solhint-disable-line no-unused-vars

 ^---------------^

contracts/past-versions/UnlockV6.sol:1219:5: Warning: Unused function parameter. Remove or comment out the

 uint _tokens // solhint-disable-line no-unused-vars

 ^----------^

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 7

Compiling 2 files with 0.5.17

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 8

Compiling 2 files with 0.5.17

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

 Testing version 9

Compiling 1 file with 0.5.17

Compiling 1 file with 0.8.4

Compilation finished successfully

 ✓ Unlock version is set

 ✓ this version and latest version have different Unlock bytecode

 ✓ Unlock has an owner

 Complete PublicLock configuration if require

 ✓ this version and latest version have different PublicLock bytecode

 Create a lock for testing

 ✓ PublicLock version is set

 Purchase a key

 ✓ Key has an ID

 ✓ Key is owned

 Upgrade Unlock to latest version

 ✓ this version and latest version have different Unlock version numbers

 ✓ latest version number is correct

 ✓ Key id still set

 ✓ Key is still owned

 ✓ New keys may still be purchased

 ✓ Keys may still be transferred

 ✓ grossNetworkProduct remains

 ✓ lock data should persist state between upgrades

 ✓ tokenURI still works as expected

 Using latest version after an upgrade

 ✓ this version and latest version have different PublicLock version numbers

 ✓ grossNetworkProduct sums previous version purchases with new version purchases

 ✓ Latest Key is owned

 ✓ Latest publicLock version is correct

·---|---------------------------|-------------|---

| Solc version: 0.4.24 · Optimizer enabled: true · Runs: 200 · B

··|···························|·············|···

| Methods

··································|·························|·············|·············|·············|···

| Contract · Method · Min · Max · Avg · #

··································|·························|·············|·············|·············|···

| ERC20 · approve · 38499 · 65796 · 49690 ·

··································|·························|·············|·············|·············|···

| ERC20 · transfer · 41799 · 141495 · 110435 ·

··································|·························|·············|·············|·············|···

| ERC20 · transferFrom · 53415 · 158052 · 103977 ·

··································|·························|·············|·············|·············|···

| ERC20Mintable · mint · 43905 · 127997 · 84226 ·

··································|·························|·············|·············|·············|···

| MinterRole · addMinter · 55114 · 55163 · 55142 ·

··································|·························|·············|·············|·············|···

| MinterRole · initialize · - · - · 68714 ·

··································|·························|·············|·············|·············|···

| MinterRole · renounceMinter · - · - · 30474 ·

··································|·························|·············|·············|·············|···

| ProxyAdmin · upgrade · 38802 · 38814 · 38813 ·

··································|·························|·············|·············|·············|···

| PublicLock · addKeyGranter · - · - · 59884 ·

··································|·························|·············|·············|·············|···

| PublicLock · addLockManager · 50399 · 59839 · 57479 ·

··································|·························|·············|·············|·············|···

| PublicLock · approveBeneficiary · - · - · 61522 ·

··································|·························|·············|·············|·············|···

| PublicLock · cancelAndRefund · 57226 · 93989 · 73121 ·

··································|·························|·············|·············|·············|···

| PublicLock · disableLock · - · - · 32091 ·

··································|·························|·············|·············|·············|···

| PublicLock · expireAndRefundFor · 45583 · 64996 · 48142 ·

··································|·························|·············|·············|·············|···

| PublicLock · grantKeys · 47115 · 151625 · 89696 ·

··································|·························|·············|·············|·············|···

| PublicLock · initialize · - · - · 331805 ·

··································|·························|·············|·············|·············|···

| PublicLock · purchase · 78628 · 339407 · 187309 ·

··································|·························|·············|·············|·············|···

| PublicLock · renounceLockManager · - · - · 32470 ·

··································|·························|·············|·············|·············|···

| PublicLock · revokeKeyGranter · - · - · 37899 ·

··································|·························|·············|·············|·············|···

| PublicLock · safeTransferFrom · - · - · 111897 ·

··································|·························|·············|·············|·············|···

| PublicLock · safeTransferFrom · - · - · 112702 ·

··································|·························|·············|·············|·············|···

| PublicLock · setApprovalForAll · 33730 · 55654 · 47282 ·

··································|·························|·············|·············|·············|···

| PublicLock · setBaseTokenURI · 37582 · 99148 · 63715 ·

··································|·························|·············|·············|·············|···

| PublicLock · setEventHooks · 63944 · 63956 · 63954 ·

··································|·························|·············|·············|·············|···

| PublicLock · setExpirationDuration · - · - · 36195 ·

··································|·························|·············|·············|·············|···

| PublicLock · setGasRefundValue · - · - · 53374 ·

··································|·························|·············|·············|·············|···

| PublicLock · setKeyManagerOf · 38564 · 60965 · 53243 ·

··································|·························|·············|·············|·············|···

| PublicLock · setMaxNumberOfKeys · - · - · 38306 ·

··································|·························|·············|·············|·············|···

| PublicLock · shareKey · 66759 · 139142 · 107693 ·

··································|·························|·············|·············|·············|···

| PublicLock · updateBeneficiary · 36634 · 36774 · 36685 ·

··································|·························|·············|·············|·············|···

| PublicLock · updateKeyPricing · 38094 · 85562 · 58317 ·

··································|·························|·············|·············|·············|···

| PublicLock · updateLockName · 34363 · 39464 · 38171 ·

··································|·························|·············|·············|·············|···

| PublicLock · updateLockSymbol · - · - · 56036 ·

··································|·························|·············|·············|·············|···

| PublicLock · updateRefundPenalty · 39874 · 59786 · 51587 ·

··································|·························|·············|·············|·············|···

| PublicLock · updateTransferFee · 34429 · 54375 · 42701 ·

··································|·························|·············|·············|·············|···

| PublicLock · withdraw · 43167 · 66909 · 46476 ·

··································|·························|·············|·············|·············|···

| TestEventHooks · configure · 45907 · 66191 · 58468 ·

··································|·························|·············|·············|·············|···

| TestEventHooks · setSpecialMember · - · - · 44292 ·

··································|·························|·············|·············|·············|···

| TimelockControllerUpgradeable · grantRole · - · - · 58794 ·

··································|·························|·············|·············|·············|···

| TimeMachineMock · timeMachine · 40886 · 40930 · 40905 ·

··································|·························|·············|·············|·············|···

| Unlock · addLockTemplate · 39844 · 99774 · 98327 ·

··································|·························|·············|·············|·············|···

| Unlock · configUnlock · 52799 · 135550 · 101563 ·

··································|·························|·············|·············|·············|···

| Unlock · createLock · 418415 · 945620 · 456021 ·

··································|·························|·············|·············|·············|···

| Unlock · createUpgradeableLock · 925858 · 971341 · 947147 ·

··································|·························|·············|·············|·············|···

| Unlock · initializeProxyAdmin · - · - · 497246 ·

··································|·························|·············|·············|·············|···

| Unlock · resetTrackedValue · 34903 · 39787 · 39154 ·

··································|·························|·············|·············|·············|···

| Unlock · setLockTemplate · 289829 · 351622 · 340414 ·

··································|·························|·············|·············|·············|···

| Unlock · setOracle · 138163 · 138185 · 138179 ·

··································|·························|·············|·············|·············|···

| Unlock · upgradeLock · - · - · 65651 ·

··································|·························|·············|·············|·············|···

| UnlockDiscountTokenV2 · delegate · 35725 · 102516 · 50032 ·

··································|·························|·············|·············|·············|···

| UnlockDiscountTokenV3 · delegate · 48308 · 110549 · 86635 ·

··································|·························|·············|·············|·············|···

| UnlockDiscountTokenV3 · initialize · - · - · 205618 ·

··································|·························|·············|·············|·············|···

| UnlockDiscountTokenV3 · mint · 104571 · 167545 · 125062 ·

··································|·························|·············|·············|·············|···

| UnlockDiscountTokenV3 · transfer · 49751 · 135624 · 62589 ·

··································|·························|·············|·············|·············|···

| UnlockProtocolGovernor · castVote · 106194 · 109193 · 107194 ·

··································|·························|·············|·············|·············|···

This report falls under the terms described in the included LICENSE.

| UnlockProtocolGovernor · execute · 110963 · 112892 · 112226 ·

··································|·························|·············|·············|·············|···

| UnlockProtocolGovernor · propose · 109206 · 109990 · 109471 ·

··································|·························|·············|·············|·············|···

| UnlockProtocolGovernor · queue · 129345 · 129417 · 129373 ·

··································|·························|·············|·············|·············|···

| Deployments · · %

··|·············|·············|·············|···

| KeyManagerMock · - · - · 5069910 ·

··|·············|·············|·············|···

| LockSerializer · - · - · 1094241 ·

··|·············|·············|·············|···

| PublicLock · - · - · 5059041 ·

··|·············|·············|·············|···

| TestEventHooks · - · - · 738575 ·

··|·············|·············|·············|···

| TestPublicLockUpgraded · - · - · 5072655 ·

··|·············|·············|·············|···

| TimeMachineMock · - · - · 5081832 ·

··|·············|·············|·············|···

| Unlock · - · - · 3383444 ·

··|·············|·············|·············|···

| UnlockDiscountToken · - · - · 1170498 ·

··|·············|·············|·············|···

| UnlockDiscountTokenV3 · - · - · 2294799 ·

··|·············|·············|·············|···

| UnlockProtocolGovernor · - · - · 2479977 ·

··|·············|·············|·············|···

| UnlockProtocolTimelock · - · - · 1711854 ·

··|·············|·············|·············|···

| UnlockUtilsMock · - · - · 489711 ·

·---|-------------|-------------|-------------|---

 632 passing (10m)

 50 pending

License

http://0.0.0.0:8642/LICENSE

